seawater that has undergone treatment to remove much of the salts.

desalinated water (Wikipedia)

Water desalination
Methods

Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture.

Saltwater is desalinated to produce water suitable for human consumption or irrigation. One by-product of desalination is salt. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water sources.

Due to its energy consumption, desalinating sea water is generally more costly than fresh water from rivers or groundwater, water recycling and water conservation. However, these alternatives are not always available and depletion of reserves is a critical problem worldwide. Desalination processes are usually driven by either thermal (e.g. distillation) or electrical (e.g., photovoltaic or wind power) as the primary energy types.

Currently, approximately 1% of the world's population is dependent on desalinated water to meet daily needs, but the UN expects that 14% of the world's population will encounter water scarcity by 2025. Desalination is particularly relevant in dry countries such as Australia, which traditionally have relied on collecting rainfall behind dams for water.

According to the International Desalination Association, in June 2015, 18,426 desalination plants operated worldwide, producing 86.8 million cubic meters per day, providing water for 300 million people. This number increased from 78.4 million cubic meters in 2013, a 10.7% increase in 2 years. The single largest desalination project is Ras Al-Khair in Saudi Arabia, which produced 1,025,000 cubic meters per day in 2014.Kuwait produces a higher proportion of its water than any other country, totaling 100% of its water use.

Schematic of a multistage flash desalinator
A – steam in     B – seawater in     C – potable water out
D – brine out (waste)     E – condensate out     F – heat exchange    G – condensation collection (desalinated water)
H – brine heater
The pressure vessel acts as a countercurrent heat exchanger. A vacuum pump lowers the pressure in the vessel to facilitate the evaporation of the heated sea water (brine) which enters the vessel from the right side (darker shades indicate lower temperature). The steam condensates on the pipes on top of the vessel in which the fresh sea water moves from the left to the right.
Plan of a typical reverse osmosis desalination plant
« Back to Glossary Index
Scroll to Top